4638976 , **1**1 RORCE INSTI FOR FEDERAL SCIENTIFIC AND TECHNICAL NFORMATION Hardcopy | Minrofich CLEARITEROFAS AIR UNIVERSITY UNITED STATES AIR FORCE EFFECT OF VIBRATION ON THE HEAT TRANSFER RATE FROM CYLINDERS IN FREE CONVECTION IN AIR THESIS GAM/ME/66B-10 Leon H. Chaffee Major USAF # SCHOOL OF ENGINEERING WRIGHT-PATTERSON AIR FORCE **BEST AVAILABLE COPY** 1966 EFFECT OF VIBRATION ON THE HEAT TRANSFER RATE FROM CYLINDERS IN FREE CONVECTION IN AIR #### THESIS Presented to the Faculty of the School of Engineering of Air Force Institute of Technology Air University in Partial Fulfillment of the Requirements for the Degree of Master of Science DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED bу Leon H. Chaffee, B. S. Major USAF Graduate Aerospace-Mechanical Engineering June 1966 ## Preface This report is concerned with the effects of vibration on convective heat transfer rates. I hope it will add some small contribution to the world of know-ledge and be of some use in future studies of the subject. The research itself has been time consuming yet interesting, at times exasperating yet not without personal satisfaction. My one regret is the lack of time with which to follow up on the unexpected. I wish to express my appreciation to Dr. Andrew J. Shine, Head, Department of Mechanical Engineering, Air Force Institute of Technology. Not only did he assist me in selecting this particular project, but as my thesis advisor he gave me timely and invaluable suggestions. Mr. John Flahive and Mr. Richard Brown provided vital assistance and solved many pratical problems associated with the assembly of equipment. Finally, I wish to thank Mr. Millard Wolfe, Foreman of the school shops, for his assistance and interest without which this project could not have been completed. Leon H. Chaffee # Table of Contents | ,Page | |--------|--------|------------------------------|------------|------------|------------------|-----|---------|-----|-----|-----|----|-----|-----|----|----|---|---|--------|---|---|------------------| | Prefa | ce . | | • • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ii | | List | of Fi | gure | s. | • | • | • | • | • | • | • | • | • | • | •, | • | • | | • | • | • | iv | | List | of Syl | nþol: | s. | • | ٠ | • | • | • | • | • | • | • | • | • | •• | • | • | • | • | • | vi | | Abstr | act. | • • | | • . | • | • | • | • | • | • | • | • | • | • | • | • | • | é | • | • | vii | | I. | Intro | oduc: | tio | n. | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 1 | | | | Bac!
Pur | kgr
pos | our
e. | nd
• | • | • | | | • | • | • | • | • | • | • | • | đ
• | • | • | 1
3 | | ıı. | Appa | ratu | s. | • | • | • | • | ÷ | • | • | • | • | • | • | • | • | • | è | • | • | · .5 | | | | Test
Vib:
Encl
Phot | cat: | ing
ure | g <i>F</i>
≥. | | er
• | nb] | У. | • | • | • | • | • | • | • | • | • | • | • | 5
5
8
8 | | III. | Expe | rime | nta: | L F | ,rc | ce | edu | ıre | · • | • | • | • | • | • | • | • | • | • | • | • | 10 | | IV. | Reșu | lts | | | • | • | • | • | • | • | • | • | , • | • | • | | • | | • | • | 12 | | ٧. | Disc | ıssid | on o | of | R€ | esu | 111 | ts | • | • | • | • | • | • | • | • | • | • | • | • | 16 | | VI. | Conc | lusić | ons | ar | ıđ | Re | ecc | mn | er | ıda | ti | lor | ıs | • | • | • | • | • | • | | 29 | | Bibli: | ograpl | hy. | | ,• | • | • | • | • | • | | | • | • | • | • | • | • | • | | • | 31 | , š_#`- # <u>List of Figures</u> | Figure | Page | |--------|--| | 1 | Schematic of Watson Vibrating Assembly 7 | | 2 | Schematic of Improved Vibrating Assembly 7 | | 3 | Schematic of Photograph Arrangement for measuring Vibration Amplitude 9 | | 4 | Variation of the Heat Transfer Coefficient with Vibration Intensity for the 0.25 in Diameter Test Cylinder | | 5. | Variation of the Heat Transfer Coefficient with Vibration Intensity at Selected Vibration Frequencies for the 0.25 in Diameter Test Cylinder | | 6 | Variation of the Heat Transfer Coefficient with Vibration Intensity at Selected Temperature Potentials of the 0.25 in Diameter Test Cylinder | | 7 | Variation of the Heat Transfer Coefficient with Vibration Intensity for the 0.75 in Diameter Test Cylinder | | 8 | Comparison of the Variation of the Heat
Transfer Coefficient with Vibration
Intensity for the 0.12, 0.25, and 0.75 in
Diameter Test Cylinders, f = 40-50 cps 17 | | 9 | Comparison of Results for the 0.12 in Diameter Test Cylinder | | 10 | Comparison of Results for the 0.25 in Diameter Test Cylinder, t_w-t_a = 90F to 100F 19 | | Figure ' | | Page | |----------|--|------| | 11 | Effect of Frequency of the Variation of the Heat Transfer Coefficient with Vibration Intensity for the 0.25 in Diameter Test Cylinder, tw-ta = 50F | 20 | | 12 | Comparison of Results for the 0.75 in Diameter Test Cylinder, tw-ta & 50F | 20 | | 13 | Positions where Schlieren Photographs were taken of the 0.75 in Diameter Test Cylinder, t_w - t_a = 100F | 23 | | 14-19 | Schlieren Photographs of the boundary layer on the 0.75 in Diameter Test Cylinder, $t_w-t_a = 100F$ | 24 | # List of Symbols - a Amplitude of vibration in - D Outside diameter of cylinder ft - E Voltage drop across cylinder volts - f Frequency of vibration cps - h Loca' coefficient of heat transfer B/hr ft²F - I Current through cylinder amps - k_f Thermal conductivity of air at t_f B/hr ft F - Nu Nusselt number, hD/k_f dimensionless - Pr Prandtl number dimensionless - Re Reynolds number of vibration, $4afD/V_{f}$ dimensionless - ta Temperature at ambient air F - t_f Temperature of boundary layer fluid, $(t_a + t_w)/2 F$ - tw Temperature of cylinder wall F - $V_{\rm f}$ Kinematic viscosity of air at $t_{\rm f}$ ${\rm ft}^2/{\rm sec}$ #### Abstract This study is a follow-on investigation of the effects of sinusoidal vibration on the heat transfer rate from cylinders in free convection in air. The purpose was to obtain and correlate heat transfer data in the region of the critical Reynolds number, to investigate the effect of the vibration at higher Reynolds numbers through the use of a larger diameter cylinder, and to obtain Schlieren photographs of the boundary layer in the vicinity of the critical Reynolds number. Three stainless steel cylinders with 0.12 in, 0.25 in, and 0.75 in diameters were vibrated at frequencies from 10 to 50 cycles per second, at amplitudes from 0.0185 to 0.765 inches, and at surface-to-ambient temperature potentials of 50F, 100F, and 200F. show that each cylinder displays a similar characteristic pattern progressing from a region in which the heat transfer rate is independent of vibration, through a transition region, to a region where the heat transfer rate generally parallels the recommended forced convection curve of McAdams and is a function only of the vibration intensity. An increased frequency shifts the transition region in the direction of higher vibration intensities. Schlieren photographs show a considerable increase in turbulence in the boundary layer through the transition region. GAM/MF/66B-10 #### I. Introduction #### Background In a free convective environment, the heat transfer rate from a body to its surrounding is determined by the mechanism in the boundary layer. In order to increase the heat transfer rate, the boundary layer must be altered by reducing its thickness or increasing the transverse fluid movement in the boundary layer or both. Vibration is one method of producing increased transverse fluid motion. A knowledge of the influence of vibrations on the rate of heat transfer by free convection from a heated surface would be of considerable interest to the design engineer. Unfortunately, to date there is a limited knowledge concerning the physical mechanisms of the processes involved. A number of studies have been conducted over the past two decades in order to ascertain transverse vibration effects on the convective heat transfer rate from both flat plates and cylinders. Two of the more recent studies involved the use of sinusoidal vibration, a method of vibration not used previously. In 1962, Shine and Jarvis investigated the sinusoidal vibration effects on the convective heat transfer rate from heated cylinders in air. They mounted the test cylinder horizontally with the ends rigidly clamped. The cylinder, excited near one end, was vibrated at its resonant frequency in a sinusoidal wave form in the vertical plane. Cylinders of 0.032 in and 0.072 in diameter were vibrated from 15 to 75 cycles per second and at amplitudes of from 0.002 to 0.99 in (Ref 4:2). In 1965, Watson conducted an extension of the work of Shine and Jarvis to investigate the effects of sinusoidal vibration at higher vibration Reynolds numbers (based on the average vibration velocity 4af and cylinder diameter), at two selected surface-to-ambient temperature potentials, and at different positions along the cylinder. Cylinders of 0.072 in, 0.12 in, and 0.25 in diameter were vibrated from 16 to 80 cycles per second and at amplitudes of from 0.05 to 1.5 in. He obtained a maximum vibration Reynolds number of 1100 with the 0.25 in diameter cylinder (Ref 5:3). From the studies conducted to date the following summary of conclusions were made (Ref 3:3, 4:2, 5:2): - a. The heat transfer rate was independent of the direction of transverse vibration (horizontal or vertical). - b. Below a critical vibration intensity (af), the heat transfer rate was unaffected by vibration. - c. Above a critical vibration intensity the heat transfer rate increased with the increased vibration intensity and was a function only of the vibration intensity. -
d. At high vibration intensities, the effect of vibration was independent of temperature and the heat transfer rate generally paralleled the recommended forced convection curve of McAdams. - e. The heat transfer rate was independent of the position of the test point along the sinusoidally vibrated cylinder and only dependent on the vibration intensity at the position. ### Purpose The purpose of this study was to extend the investigation of the effect of sinusoidal vibration on the convective heat transfer rate from heated cylinders to air. The specific objectives were (1) to obtain and correlate heat transfer data in the region of the critical vibration Reynolds number (dimensionless vibration intensity) with the same size cylinders as Watson used; (2) to investigate the effect at higher Reynolds numbers through the use of a larger diameter cylinder and a redesign of the vibrating apparatus to accommodate the larger cylinder; and (3) to obtain Schlieren photographs of the boundary layer and surrounding fluid in the region of the critical Reynolds number. #### II. Apparatus Ľ The apparatus used in this study consisted basically of (1) three electrically heated circular test cylinders, (2) a vibrating assembly into which a cylinder was clamped, (3) a protective enclosure to seclude the cylinder from random convective air currents, (4) a photographic arrangement used to determine vibration amplitude, and (5) a Schlieren apparatus. # Test Cylinders The test cylinders were 42 to 46 in long sections of polished, stainless steel, thin-walled tubing with 0.12 in, 0.25 in, and 0.75 in outside diameters. Heat was provided by passing adjustable direct electrical current through the cylinder. An internally attached iron-constantan thermocouple permitted instantaneous monitoring of the cylinder wall temperature at the test position, the point of maximum vibration amplitude. #### Vibrating Assembly Two different vibrating assemblies were used during the course of this study. The first, used with the 0.12 in and 0.25 in diameter cylinders, was the same assembly used by Watson (Ref 5:5). The cylinder was rigidly clamped at both ends. An electromagnetic vibrator was positioned directly below the cylinder and six inches from the left end clamp. Variable frequency and amplitude vibrations were transmitted to the cylinder through the vibrator drive rod which also served to constrain vibratory motion to the vertical plane. A schematic diagram of this assembly is shown in Figure 1. An adjustable but constant axial tension was applied to the cylinder at its right end to permit selected variation in the natural response frequency of the cylinder and to compensate for thermal expansion. The second vibrating assembly, used with the 0.25 in and 0.75 in diameter cylinders, was designed to . accommodate the greater forces required to vibrate the larger diameter cylinders. The clamps were pinned to allow rotation in the vertical plane. The vibrator drive rod was connected to a moment arm extension of the right cylinder clamp. Constraint of vibratory motion to the vertical plane was effected both through the pinned clamp arrangement and through increased clamp size. A. schematic diagram of this assembly is shown in Figure 2. Axial tension for this assembly was applied to the left end of the cylinder. #### Enclosure The test cylinder with its associated clamps and clamp supports of the Watson assembly was mounted in a 48 x 12 x 30 in enclosure. For the improved assembly, the enclosure dimension were 60 x 20 x 30 in. In each case the top and bottom were vented to permit free convection around the cylinder. An iron-constantan thermocouple was located within each enclosure at cylinder level to sense ambient temperature. ### Photograph Arrangement A parallel light beam was passed through a glass window in the front panel of the enclosure, across the test cyrander, and through a 1/32 in wide slit in the rear panel. The resulting shadow of the vibrating test cylinder was then directed onto a rotating mirror which swept it across the open aperture to a Polaroid camera. The resulting photograph provided a measureable amplitude of vibration. A schematic diagram of the photographic arrangement is shown in Figure 3. For the Schlieren photographs the slit was removed and a spark lamp provided the open aperture time for the photograph. ## III. Experimental Procedure The test cylinder was initially heated without vibration to one of the following arbitrarily chosen temperature potentials: 50F, 100F, 200F. The total electrical power EI delivered to the cylinder was then determined by recording the metered values of the current I and the voltage drop E. A photograph of the static cylinder was taken to determine the scale factor for subsequent vibrational amplitude measurements. The temperature potential and power measurements provided data for determining the free convective heat transfer rate. The cylinder was then vibrated at its response frequency at incremental increases in amplitude. The frequency and amplitude measurements provided data for determining the vibration Reynolds number. This procedure was continued until a decrease in temperature potential was noted indicating an increase in the heat transfer rate. From this point on the power delivered to the cylinder was increased incrementally and the amplitude of vibration adjusted until the temperature potential had stablized at the originally chosen value. Recordings of the power delivered to the cylinder, temperature potential, and GAM/ME/66B-10 frequency of vibration were made and a photograph of the vibrating cylinder was taken for each adjusted change in amplitude. This procedure was continued for a series of test runs during which the temperature potential was maintained at the originally chosen value. The double amplitude of vibration 2a was determined for each photograph using a microscopic comparator graduated to 0.0001 in. The experimental ranges were as follows: frequency f, 10 to 50 cps; amplitude a, 0.0185 to 0.765 in. The maximum error in the determination of the Reynolds number arising from measurements of a and f was quite large at extremely low Reynolds numbers; however, above a Reynolds number of 75 the range of error was generally from two to five per cent. The maximum error in the determination of the heat transfer coefficient, expressed as the Nusselt number Nu, arising from measurements of temperature potential t_w - t_a , I, and E was calculated to be 7.1 per cent. As the values of Re and Nu increased the associated error decreased. Schlieren photographs of the 0.75 in diameter cylinder heated to a temperature potential of 200F were taken at selected intervals through the entire sequence of data obtained for that temperature potential. #### IV. Results The results of this study are presented in Figures 4 through 7. Heat transfer coefficients are expressed as Nusselt numbers and vibration intensities are expressed as Reynolds numbers. There exist for each cylinder (1) a region at low vibration intensities in which vibration has no effect on the heat transfer rate; (2) a region at higher vibration intensities in which the variation in the heat transfer coefficient generally parallels the recommended forced convection curve of McAdams; and (3) a characteristic transition region in between. There is conclusive evidence that the rate of heat transfer in the transition region is not a function of vibration intensity alone. Data presented in Figures 4 and 5 for temperature potentials of 92F and 100F show that an increase in vibration frequency shifts the transition region in the direction of higher vibration intensities. Although the variation of the heat transfer coefficient with vibration intensity results in the same basic pattern for each cylinder size tested, in the region where the variation generally parallels the curve of Line to the same GAM/ME/66B-10 McAdams there does exist an increase in displacement from this curve with increased cylinder size. This is shown in Figures 4 through 7. At the higher vibration intensities, the variation in the heat transfer coefficient with vibration intensity for a given cylinder size is independent of the temperature potential and solely a function of the vibration intensity. This is shown in Figure 6. The Schlieren photographs of the 0.75 in diameter cylinder at a temperature potential of 100F are presented in Figures 13 through 19. Figure 4 Variation of the Heat Transfer Coefficient with Vibration Intensity for the 0.12 in Diameter Test Cylinder Figure 5 Variation of the Heat Transfer Coefficient with Vibration Intensity at Selected Vibration Frequencies for the 0.25 in Diameter Test Cylinder Variation of the Heat Transfer Coefficient with Vibration Intensity at Selected Temperature Potentials of the 0.25 in Diameter Test Cylinder Figure 7 Variation of the Heat Transfer Coefficient with Vibration Intensity for the 0.75 in Diameter Test Cylinder #### V. Discussion of Results Figure 8 shows the variation of the heat transfer coefficient with vibration intensity at similar vibration frequencies for the three cylinders tested during this study. Each curve has a similar characteristic pattern. Below a critical vibration Reynolds number the heat transfer rate is independent of the vibration intensity. Above this Reynolds number the heat transfer rate increases markedly through the transition region as the vibration intensity is increased. At still higher vibration intensities the heat transfer rate follows a curve that generally parallels the recommended forced convection curve of McAdams. The displacement of the heat transfer rate curve from the curve of McAdams in this parallel region increases as the cylinder diameter is increased. Results obtained with the 0.12 in diameter cylinder are compared in Figure 9 to those obtained by Watson for the same size cylinder. Correlation is not satisfactory since Watson does not show the same
characteristic transition pattern. Examination of the experimental data by Watson revealed that his initial Nusselt number (no vibration) is 25 per cent higher than the free convection value recommended by McAdams for the cylinder diameter and temperature potential involved (Ref 2:176). Consequently, the data obtained by Watson is questionable. The initial Nusselt number obtained in this study deviates from that recommended by McAdams by five percent. In Figure 10 the results of this study with those of Watson and Neely for the 0.25 in diameter cylinder are compared. Again, correlation with Watson is unsatisfactory at the lower vibration Reynolds numbers. For this cylinder, the initial Nusselt number he obtained is 19 per cent higher than the recommended McAdams value; therefore, his data is again questionable. The initial Nusselt number obtained in this study deviates from the recommended McAdams value by one per cent. Correlation with Neely, on the other hand, is excellent; the difference in the paths through the transition region can be attributed to different frequencies of vibration. This is brought out more clearly in Figure 11 which shows that the transition region moves toward lower vibration intensities as the frequency is decreased. An additional significance of the excellent correlation with Neely is the indication that the variation of the local heat transfer coefficient with vibration intensity does not depend upon the method of vibration used. The method of vibration used by Neely was not sinusoidal as was used in this study. He vibrated the entire cylinder transversely in the horizontal plane. Figure 12 shows a comparison of the test results obtained with the 0.75 in diameter cylinder in this study and the 0.875 in diameter cylinder by Fand and Kaye (Ref 1:495). Although direct correlation is not possible since the cylinders are of different size, the general transition patterns appear similar. Unfortunately, Fand and Kaye were not able to obtain data at higher vibration intensities to show the region generally paralleling the recommended curve of McAdams. Fand and Kaye show a slightly different curvature through the transition region which might be explained by the fact that their data was obtained using higher and variable frequencies, 54 to 225 cycles per second, rather than using constant frequencies as in this study (Ref 1:494). The results of this study show that for a given vibration frequency there is a given path for the variation of the heat transfer coefficient through the transition region. The supposition here is that the overall effect is a function of vibration frequency when in reality it may be a function of vibration amplitude. In either case it is apparent that the variation of the heat transfer coefficient through the transition region is not soley a function of the vibration intensity, but is indeed more complex. Additional qualitative study of this phenomenon is needed. Figure 8 shows an increase in displacement from the recommended curve of McAdams with increased cylinder diameter. A critical examination of the results obtained in this study and those obtained by Neely indicate that the variation of the heat transfer coefficient with vibration intensity above the transition region may not parallel the curve of McAdams but rather may be constantly diverging from it. Further qualitative study is needed to investigate the behavior of this possible divergence, particularly in the gap between the 0.25 in and 0.75 in diameter cylinders. The Schlieren photographs show a dramatic increase in vortex turbulence in the boundary layer as the vibration intensity is increased through the transition region. This increase in turbulence provides ample justification for the rapid increase in the heat transfer rate with increased vibration intensity through the transition region. Figure 13 Positions Where Schlieren Photographs Were Taken of the 0.75 in Diameter Test Cylinder, t_w - t_a = 100F Figure 14 Schlieren Photograph of Static 0.75 in Diameter Test Cylinder, t_w - t_a = 100F Figure 15 Schlieren Photograph at Position 1 # GAM/ME/66B-10 25 Schlieren Photographs at Position 3 Figure 18 Schlieren Photographs at Position 4 Figure 19 Schlieren Photographs at Position 5 ## VI. Conclusions and Recommendations The results of this study of the free convective heat transfer from vibrating cylinders lead to the following conclusions: - 1. There exist for each cylinder (1) a region at low vibration intensities in which vibration has no effect on the heat transfer rate; (2) a region at higher vibration intensities in which the variation in the heat transfer coefficient generally parallels the recommended forced convection curve of McAdams; and (3) a characteristic transition region in between. - 2. In the region at higher vibration intensities where the heat transfer rate curve generally parallels the recommended forced convection curve of McAdams, there is an increased displacement from the McAdams curve with increased cylinder size for the range of cylinder sizes tested. For a given cylinder size, however, the heat transfer rate curve is independent of the temperature potential and dependent only on the vibration intensity within the range of temperature potentials used in this study. - 3. In the transition region, the heat transfer rate is not solely a function of the vibration intensity. An increase in vibration frequency shifts the transition region in the direction of higher vibration intensities. - 4. There is a considerable increase in turbulence in the boundary layer through the transition region which in turn justifies the marked increase in the heat transfer rate through this region. - 5. The results of this study are in excellent agreement with the results of Neely for the 0.25 in diameter cylinder (Ref 3:30). The following recommendations are made for future studies which might be undertaken: - 1. That a qualitative study and analysis of the transition region phenomenon be conducted. - 2. That the divergence of the variation of the heat transfer coefficient with vibration intensity from the recommended forced convection curve of McAdams be investigated. ## Bibliography - 1. Fand, R. M., and J. Kaye. "The Influence of Vertical Vibrations on Heat Transfer by Free Convection from a Horizontal Cylinder." <u>International Developments in Heat Transfer</u>, Part II: 490-8 (1961). - 2. McAdams, W. H., <u>Heat Transmission</u> (Third Edition). New York, New York: McGraw-Hill Book Co., Inc., 1954. - Neely, D. F., Effect of Vibration on Heat Transfer from Cylinders in Free Convection. Thesis (unpublished). Dayton, Ohio: Air Force Institute of Technology, August 1964. - 4. Shine, A. J., and F. C. Jarvis. Effect of Vibration on the Heat Transfer Rate from Cylinders in Free Convection. Paper (unpublished). Dayton, Ohio: Air Force Institute of Technology, 1963. - Watson, W. J. <u>Effect of Vibration on Heat Transfer from Cylinders Vibrated Sinusoidally within a Vertical Plane in Free Convection.</u> Thesis (unpublished). Dayton, Ohio: Air Force Institute of Technology, December 1965. Part II . . # Table of Contents | Page | |--------|--------|-------|---------|-----|------|-----|-----|-----|-----|-----|-----|----|----|----|-----|----|----|---|------| | List | of Fig | ures | • | | • | • | | • | • | • | • | • | • | • | • | • | • | • | iii | | List o | of Sym | bols | • | • • | • | • | | ě | • | • | • | • | • | • | • | • | • | • | iv | | Append | dix A: | Ap | para | atu | ıs a | ınd | Ex | pe: | ćiń | ner | nta | al | Pı | 00 | cec | lu | ce | • | 1 | | | Appar | atus | | | | | | | | | | | | | | • | | | 2 | | | 11 | Test | | | | | | | | | | | | | | | | | 2 | | | | Vibr | - | | | | , | | | | | | | | | | | | 2 | | | | Cy1i | | | | | - | | | | | | | | | | | | 4 | | | | Temp | | | | | - | | | | | | | | | | | | 5 | | | | Vibr | | | | | | | | | | | | | | | | | 6 | | | Exper | | - | | | | | | | | | | | | | | | | 13 | | | DAPEL | LIICI | <i></i> | • • | | | | • | | • | • | Ť | • | • | • | • | • | • | | | Append | dix B: | De | vel | opm | ent | : 0 | f E | qua | ati | Lor | ns | • | • | • | • | • | • | • | 15 | | | Equat | ion | for | Ca | lei | ıla | tin | a l | Nu | | | | | | | | | | 16 | | | Equat | | | | | | | | | | | | | | | | | | 18 | | | Equat | | | | | | | | ,— | | | | | | | | | | 20 | | | Jqua | | | | | | | · • | | • | • | • | • | • | • | ٠ | • | • | | | Append | dix C: | Er | ror | An | aly | /si | s. | • | • | • | • | • | • | • | • | • | • | • | 25 | | | Elect | rica | 1 M | eas | sure | eme | nts | • | • | • | | | | • | • | • | • | • | 26 | | | Frequ | | | | | | | | | | | | | | | | | | 26 | | | Ampli | | | | | | | | | | | | | | | | | | 26 | | | Tempe | | | | | | | | | | | | | | | | | | 28 | | | Overa | | | | | | | | | | | | | | | | | | 29 | | | OVCIO | | | | • | • | • • | • | • | • | ٠ | ٠ | ٠ | ٠ | • | ٠ | • | • | | | Append | dix D: | Sa | mp1 | e C | alc | cul | ati | on | s. | • | • | • | • | • | • | • | • | • | 30 | | Append | dix E: | Ex | per: | ime | enta | 1 | Dat | a. | • | • | • | • | • | • | • | • | • | • | 34 | | Biblio | ograph | ıy | • | | | • | | | • | • | • | • | • | • | • | • | | • | 44 | | Vita. | | | | | | | | | | | | | | | | | | | 45 | # <u>List of Figures</u> | Figure | | Page | |--------|---|------| | 1 | Photograph of General Arrangement of Test Apparatus | 8 | | 2 | Photograph of Test Apparatus, Front Panel Installed | 9 | | 3 | Photograph of Enclosure and Test Cylinder, Front Panel Removed | 10 | | 4 | Photograph of Instrumentation | 11 | | 5 | Photographs of Static and Vibrating 0.75 in Diameter Cylinder | 12 | | 6 | Temperature Profile in 0.25 in Diameter Cylinder with $t_w-t_a = 93F$ | 21 | | 7 | Temperature Profile in 0.75 in Diameter Cylinder with t_w - t_a = 50F | 22 | | 8 | Temperature Profile in 0.75 in Diameter Cylinder with $t_w-t_a=100F$ |
23 | | 9 | Power Per Unit Volume Across Static 0.75 | 24 | # List of Symbols - a Amplitude of vibration in - A_w Surface area of cylinder ft² - D Outside diameter of cylinder ft² - E Voltage drop across cylinder volts - f Frequency of vibration cps - g Gravitational acceleration 32.2 ft/sec² - Gr Grashof number, $D^3 / g(t_w t_a) / v_f^2$ dimensionless - h Local coefficient of heat transfer B/hr ft²F - I Current through cylinder amps - k_{f} Thermal conductivity of air at t_{f} B/hr ft F - Length of cylinder between voltage measurements ft - Nu Nusselt number, hD/K_f dimensionless - Pr Prandtl numbe dimensionless - Qc Total convective heat loss B/hr or watts - Qr Total radiation heat loss B/hr or watts - Re Vibration Reynolds number, $4afD/V_f$ dimensionless - Ta Temperature of ambient air R - ta Temperature of ambient air F - T_f Temperature of boundary layer fluid, $(T_a + T_w)/2 R$ - t_f Temperature of boundary layer fluid, $(t_a + t_w)/2 F$ - T_{w} Temperature of cylinder wall R - tw Temperature of cylinder wall F # GAM/ME/66B-10 - V Volume of cylinder ft³ - β Coefficient of volumetric expansion, $1/T_f R^{-1}$ - E Radiation emissivity of cylinder surface dimensionless - ${\cal V}$ Kinematic viscosity of air at $t_{\rm f}$ ${\rm ft}^2/{\rm sec}$ - T Constant 3.1416... - σ Stefan-Boltzmann constant 0.173 x 10⁻⁸ B/hr ft² R⁴ Appendix A Apparatus and Experimental Procedures #### Apparatus Arrangement of the apparatus used in this study is shown photographically in Figures 1 through 4. These photographs should supplement most of the description which follows: ## Test Cylinders The test cylinders were lengths of stainless steel tubing of three different diameters. Specific data is listed below. | Diameter | Length | Wall Thickness | Surface | |----------|-----------|----------------|----------| | 0.12 in | 42.6 in | 0.020 in | Polished | | 0.25 in | 43.375 in | 0.028 in | Polished | | 0.75 in | 46.0 in | 0.020 in | Polished | An iron-constantan thermocouple was attached to the internal wall surface of each cylinder at the test point, the point of maximum vibration amplitude, to provide instantaneous monitoring of the cylinder wall temperature. The cylinder ends were closed with press-fit styrofoam to reduce heat losses by convection within the cylinder. # <u>Vibration Assembly and Housing</u> For the Watson assembly, the test cylinder was mounted horizontally and clamped rigidly at each end to a vertical post. An electromagnetic vibrator was positioned directly below the test cylinder and six inches from the left mounting clamp. An aluminum vibrator drive rod transmitted controllable frequency and amplitude outputs to the test cylinder, and to some degree constrained the cylinder to vibrate in the vertical plane. An adjustable but constant axial tension was applied to the cylinder at its right end to permit selected variation in the natural response frequency of the cylinder and to compensate for thermal expansion. The test cylinder, clamps, and support posts were mounted in a 48 x 12 x 30 in enclosure to provide protection from the random convective air currents in the laboratory. The enclosure was vented top and bottom to permit free convection around the cylinder. An iron-constantan thermocouple was mounted at cylinder level and six inches from the cylinder test point within the enclosure to sense the ambient air temperature (Ref 5:5). For the improved apparatus, the test cylinder was mounted horizontally in a three inch long steel clamp at either end. Each clamp was pinned to a nine inch high clamp support which allowed rotation in the vertical plane and constrained cylinder vibration to the same plane. The clamp supports were bolted to a five foot long piece of to the top of a 26 x 28 x 49 in cement pedestal in the M. E. Laboratory. The left clamp support was adjustable along the channel iron to accommodate different cylinder lengths. An adjustable but constant axial tension was applied to the test cylinder at the left mounting clamp. The electromagnetic vibrator was bolted to the right side of the cement pedestal. The steel vibrator drive ro was connected to a moment arm extension of the right mounting clamp. The channel iron, clamps and supports, and test cylinder were mounted in a 60 x 20 x 30 in enclosure with removable front and back panels. An iron-constantan thermocouple for measuring the ambient temperature, was mounted at cylinder level and nine inches from the cylinder test point. ### Cylinder Heating Power A 28 volt, 100 amp power source was available from the M. E. Laboratory DC rectifier. This source was connected to a high resistance load bank which permitted 6 to 8 amp incremental changes in current. A 5.8 ohm, 10 amp, and a 2.3 ohm, 4 amp slide resistor were connected in parallel with the load bank to provide fine power adjustments. Power leads connected to metal clamps at either end of the test cylinder placed the cylinder in series with the resistance and an ammeter. The voltage pick-off leads were connected to the power clamps for the 0.12 in and 0.25 in diameter cylinders and were soldered to the 0.75 in diameter cylinder immediately inside the mounting clamps. The location of these voltage leads determined the cylinder lengths L used in computing the cylinder surface area $A_{\rm W}$. These lengths are listed below: | Diameter | Run Series | Length | |----------|------------|-----------| | 0.12 in | A, B, C | 40.0 in | | 0.25 in | D, E, F | 41.8 in | | 0.25 in | G, Н | 34.6 in | | 0.75 in | I, J | 37.125 in | ## Temperature Measurement Two temperature recorders were used during this study. A Minneapolis Honeywell Brown Electronik Recorder with a 50F to 300F range and 12 channels was used for the A through H series of runs. A Bristol Dynamaster Recorder with a 0F to 200F range and 16 channels was used for the I and J series of runs. For each recorder the ambient air sensing thermocouple was connected to one channel to provide a temperature monitor for each minute of operation. The cylinder wall thermocouple was connected in series to each of the remaining channels to provide a temperature monitor every four to five seconds. # Vibration Control and Measurement Vibration frequency was controlled through adjustment of an audio frequency oscillator contained in the vibrator power supply cabinet. Actual frequency measurements, however, were determined with a General Radio Company strobotac. Vibration amplitude was controlled by a power rheostat in the vibrator power supply. In order to measure the amplitude, a photographic arrangement was used. light from a mercury lamp unit was passed through a condensing lens onto a 1/32 in pin hole. The resulting point source of light was located at the focal length of a 7.5 in parabolic mirror which directed a parallel light beam through a vertical 1/32 in slit in the rear panel of the enclosure, across the vibrating cylinder, and through a glass window in the front panel. The shadow image of the vibrating cylinder was reflected by a second parabolic mirror onto a 2 in rotating flat mirror which swept the image across the aperture to a Polaroid camera containing type 47 film. The camera was mounted on the end of a plywood housing with an extendable bellows section which contained the aperture and a manually operated shutter. Knife scratches were inscribed on the photograph across the vibration peaks and the double amplitude was measured with a microscopic comparator. Figure 5 shows examples of the photographs used to determine vibration amplitude. For the Schlieren photographs, the rotating mirror was replaced with a 4 in plane mirror and the 1/32 in slit was removed to provide a more lateral view of the cylinder. A knife edge was located between the 4 in plane mirror and the camera aperture. A five microsecond spark lamp was installed in place of the mercury lamp; the spark feature also served as the camera shutter. 0.75 in Diameter Cylinder ## Experimental Procedure The static test cylinder was initially heated to a selected temperature potential. The current, voltage, ambient air temperature, and cylinder wall temperature were recorded. A photograph of the static cylinder was taken to provide a scale factor for computing subsequent vibration amplitudes. The photographic procedure consisted of the following: (1) the room lights were turned off; (2) the camera slide was removed; (3) as the image from the rotating mirror passed the camera aperture, the manually operated shutter was opened momentarily; (4) the camera slide was re-installed; and (5) the room lights turned back on. This procedure was also used for all photographs taken of the vibrating cylinder. The vibrator was turned on and the frequency adjusted to the natural response frequency of the cylinder. The vibration amplitude was increased incrementally. The current, voltage, ambient air temperature, cylinder wall temperature, and frequency were recorded and a photograph was taken for each incremental increase in amplitude. This procedure was continued until a decrease in the temperature potential, which indicated an increase in heat transfer rate, was noted. From that point on, the current was increased incrementally and the vibration amplitude was adjusted until the selected temperature potential was again obtained and stabilized. The current voltage, ambient air temperature, cylinder wall temperature, and frequency were recorded, and a photograph taken for each incremental increase in current. This procedure was continued through each series of test runs. ## Development of Equations #### Equation for Calculating Nu Development of the working equation for determining . the local Nu at the test point on the cylinder involved the following assumptions: - a. The electrical power per unit volume delivered to the cylinder was constant between voltage pick-off points. - b. Axial heat conduction along the cylinder at the test point was negligble. - c. Radiation heat
losses were a function of the temperature potential and not a function of vibration. Axial temperature profiles were experimentally determined for the 0.25 in diameter cylinder at t_w - t_a = 100F and for the 0.75 in diameter cylinder at t_w - t_a = 50F and t_w - t_a = 100F by moving an iron-constantan thermocouple at measured intervals along the inner wall of the static cylinder. The resulting temperature profiles are shown in Figures 6, 7, and 8. Since the temperature gradients were essentially flat over a considerable portion of the cylinder including the center test point, the axial heat conduction was shown to be negligible. Similar results were arbitrarily assumed for the 0.12 in diameter cylinder. The power per unit volume was experimentally determined over selected intervals of the static 0.75 in diameter cylinder at $t_w - t_a = 50F$. The initial interval was 8 in, 4 in either side of the center test point. The second interval was 10 in, 5 in either side of the center test point. Subsequent intervals were determined in the same manner across the length of the cylinder until the vibration test voltage pick-off points were reached. At each interval the voltage drop across the interval was determined using a Weston Analyzer with a 1.6 volt scale. The current was maintained constant. Volumes were computed assuming a constant cross sectional area and using the selected interval. Results are shown in Figure 4 and within the accuracy of measurements the power per unit volume was constant over each interval tested. Similar results were arbitarily assumed for the other cylinders and temperature potentials. The basic equation for the local convective heat loss can be given by $$\frac{Q_{c}dV}{V} = hdA(t_{w}-t_{a})$$ This can be rewritten as $$\frac{Q_{c}A_{x}dx}{V} = hcdx(t_{w}-t_{a})$$ \mathbf{k}_{ℓ} Where $c = perimeter of the cylinder. Furthermore, since <math>\frac{Ax}{V} = \frac{1}{L}$ $$\frac{Q_{c}}{L} = hc(t_{w}-t_{a})$$ $$Q_{c} = hcL(t_{w}-t_{a})$$ $$Q_{c} = hA_{w}(t_{w}-t_{a})$$ $$h = \frac{Q_{c}}{A_{w}(t_{w}-t_{a})}$$ $$Nu = \frac{Q_{c}D}{A_{wkf}(t_{w}-t_{a})}$$ Now Q_C = EI - Q_T where EI, the power input, can be measured and Q_T must be determined independently. Hence, the local Nu can be determined using measurable quantities with the exception of Q_T . The working equation with $Q_{\mathbf{C}}$ expressed in watts is Nu = 3.413 $$\frac{Q_cD}{A_w k_f (t_w - t_a)}$$ (1) # Equation for Calculation of Qr The basic equation for calculation of $Q_{\mathbf{r}}$ (B/hr) is given by $$Q_r = \sigma \in A_w(T_w^4 - T_a^4)$$ Evaluation of the emissivity was accomplished by forcing the static free convective heat transfer rate obtained by the apparatus of this study to agree with the recommended free convection curve of McAdams (Ref 2:176). Knowing $Q_{\rm C}$ in this case, $Q_{\rm T}$ could be determined by subtracting $Q_{\rm C}$ from the measured EI; hence, the emissivity could be determined and assuming it to be constant in the temperature ranges tested, it could be reapplied to all data. Below is a summary of calculations made to determine the emissivity for each cylinder based on the recommended free convection curve of McAdams. | Cylinder | Run | GrPr | Nu | $Q_{r}(watts)$ | € | |------------|-----|-------|------|----------------|-------| | 0.12 in OD | A-1 | 105 | 2.12 | 0 | 0.0 | | | B-1 | 143 | 2.16 | 2.3 | 0.22 | | 0.25 in OD | D-1 | 919 | 3.07 | 1.22 | 0.139 | | | E-1 | 1226 | 3.22 | 3.2 | 0,138 | | | G-1 | 824 | 2.96 | 0.94 | 0.138 | | 0.75 in OD | I-1 | 15850 | 5.63 | 0.16 | 0.015 | | | J-1 | 25000 | 6.03 | 1.44 | 0.059 | The following emissivities were selected based on the above data: | Cylinder | € | |------------|------| | 0.12 in OD | 0.10 | | 0.25 in OD | 0.14 | | 0.75 in OD | 0.05 | The chosen emissivities were used to calculate the test Nu in all data taken. Below is summarized the deviation in the free convective Nu as compared to McAdams: | Cylinder | Run | Nu(test) | Nu (McAdams) | Error % | |------------|-----|----------|--------------|---------| | 0.12 in OD | A-1 | 1.91 | 2.12 | 5.2 | | | B-1 | 2.27 | 2.16 | 5.1 | | 0.25 in OD | D-1 | 3.10 | 3.07 | 1.0 | | | E-1 | 3.20 | 3.22 | 0.6 | | | G-1 | 2.96 | 2.96 | 0.0 | | 0.75 in ÔD | 1-1 | 5.46 | 5.63 | 3.0 | | | J-1 | 6.07 | 6.03 | 1.0 | The working equation for determining $Q_{\mathbf{r}}$ in watts is $$Q_r = \frac{17.57}{60}(0.173) A_w \in \left[\left(\frac{T_w}{100} \right)^4 - \left(\frac{T_a}{100} \right)^4 \right]$$ (2) where ϵ is one of the selected values above depending on the cylinder as identified by the diameter. # Equation for Calculating Re The average vibrational velocity, 4af, was used in calculating Re. The working equation is $$Re = \frac{4afD}{12 \mathcal{V}_f} = \frac{2afD}{6 \mathcal{V}_f}$$ (3) | | | | 8.
S. | |---|---------------|--|---| | | | | | | | | ************************************** | <u>(c.</u> | | 2 3 7 4 5 5 7 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 | | | 30 | | | | | H. H. | | A TO | | | (a) | | | | | in) (t _w -t _a) | | | | | (in (t | | 0 | | | Cylinder(in) | | 0 12 12 12 12 12 | | | w. | | | | | Gy J | | | | | 20 cf (| | | | | | | | | | <u> </u> | | | | | 4 3 | | | | | 15
ce fro
Figure | | | | | n Fi | | | | | | | | | | | | | | | r o | | | | | | | | | | I. I. | | | | | 5
Profile | | | 0.1 | Φ | <u> </u> | | | | 0 | nre ure | | | | | #### ################################# | | | | | o Der | | 180 | 140 | 120 | 100 O O O O O O O O O O O O O O O O O O | | | | | г | | | mperature (F) | 191) | | | | | | | | | | | | ### Error Analysis ### Electrical Measurements Measurements of the voltage E and current I were used to calculate the total power input to the cylinder. The voltmeters and ammeters were calibrated by the Electrical Engineering Department against a meter standard accurate to $\frac{1}{4}$ of 1%. Instrument reading errors were judged to be \pm 10% of the smallest scale reading. Accuracy data for the meters used is presented in Table C-1. ### Frequency Measurement The vibration frequency was measured with a stro-botac calibrated prior to each series of runs. The accuracy of the instrument when calibrated was \pm 1% of the high scale. This amounted to a possible error of \pm 0.617 cps. #### Amplitude Measurement The double amplitude of vibration was measured with a micro comparator between knife scratches scribed across the amplitude peaks on the Polariod film. The comparator could be read to the fourth decimal place. The primary Table C-1 Electrical Measurement Data Errors | | Smallest | r | Maximum | Maximum | |----------|---------------------|--------------------------|---------------------|------------------------| | Scale | Scale
Graduation | Closest
Approximation | Instrument
Error | Total Error
in Data | | 50 amps | 1.50 amps | + 0.05 amps | ± 0.125 amps | + 0.175 amps | | 150 amps | 1.00 amps | + 0.1 amps | + 0.375 amps | + 0.475 amps | | 15 volts | 0.10 volts | + 0.01 volts | + 0.0375 volts | ± 0.0475 volts | | 3 volts | 0.02 volts | ± 0.002 volts | + 0.0075 volts | + 0.0095 volts | source of error was the scribing of the double amplitude. This error was estimated to be \pm 0.001 in. In addition, the scale factor had an estimated \pm 0.001 in error. The maximum total error in measuring the double amplitude was \pm 0.002 in. ### Temperature Measurement The Brown Recorder, used in the A through H series of runs, was calibrated over its 50F to 300F range by personnel in the Aerospace Research Laboratories. The entire temperature measuring system, recorder and iron-constantan thermocouples, was re-checked at ambient air and boiling water temperatures against a mercury in glass thermometer. Agreement was within the ability to read the scales. The Bristol Dynamaster Recorder, used in the I and J series of runs, was calibrated over its OF to 200F range with an accurate Leeds and Northrup millivolt potentiometer. Since for either recorder the manufacturer could not guarantee an accuracy of better than ± 0.03 millivolts in the mechanical slide linkage, a possible error of + 1F was assumed. ### Overall Error The maximum possible error in Nu is given by $$\Delta Nu = \frac{3.413D}{A_W k_f} \left[\frac{E\Delta I}{(t_W - t_a)} + \frac{I\Delta E}{(t_W - t_a)} + \frac{EI\Delta(t_W - t_a)}{(t_W - t_a)^2} \right]$$ (4) The maximum possible error in Re is given by $$\Delta Re = \frac{4D}{12 \, \mathcal{V}_f} \, (a \Delta f + f \Delta a) \tag{5}$$ The largest overall error in Nu occurred for Run A-1 and was computed to be 7.1%. As the value of the Nu increased its relative error decreased. The largest overall error in Re occurred for Run A-7 which also had the lowest Re (=8). It computed to $37\frac{1}{2}\%$. This resulted as a consequence of the relative values of the small measured amplitude of vibration and the estimated error involved in this measurement. The error in Re, however, dimenished rapidly as Re was increased and the general range of the Re errors was 2% to 5%. # Sample Calculations The following calculations are based on Run I-34 for the 0.75 in diameter cylinder. The cylinder dimensions are: $$D = 0.0626 \text{ ft}$$ $L = 3.09 \text{ ft}$ The recorded test data are: $$t_a = 87F$$ I = 49.0 amps 2a = 0.6430 in $$t_W = 137F$$ E = 1.26 volts f = 43.2 cps The following computations were performed: $$t_f = \frac{t_W + t_A}{2} = \frac{137 + 87}{2} = 112F$$ $$t_w - t_a = 137 - 87 = 50F$$ $$EI = (1.26)(49.0) = 61.74$$ watts $$A_W = \pi DL = (3.1416)(0.0626)(3.09) = 0.609 \text{ ft}^2$$ The fluid properties at t_f = 112F were determined to be (Ref 1:504): $$V_{\rm f}$$ = 18.83x10-5 ft²/sec $$k_{f} = 0.01594 \text{ B/hr ft. F}$$ $$Pr = 0.704$$ The radiation heat loss was computed from Equation (1): $$Q_r = \frac{17.57}{60}(0.173)A_w \in \left[\frac{T_w}{100} \right]^4 - \left(\frac{T_a}{100} \right)^4$$ where the
emissivity \in = 0.05 (from Appendix B) and $Q_{\mathbf{r}}$ is given in watts. $$Q_{r} = \frac{17.57}{60}(0.173)(0.609)(0.05) \left[\left(\frac{460 + 137}{100} \right)^{4} - \left(\frac{460 + 87}{100} \right)^{4} \right]$$ $$Q_{r} = 0.58 \text{ watts}$$ Hence, the convective heat loss is $$Q_C = EI - Q_T - 61.74 - 0.58 = 61.16$$ watts The Nusselt number from Equation (2) is $$Nu = 3.413 \frac{Q_cD}{A_Wk_f(t_W-t_a)}$$ $$Nu = 3.413 \frac{(61.16)(0.0626)}{(0.609)(0.01594)(50)}$$ $$Nu = 26.90$$ $$\frac{\text{Nu}}{\text{Pr.}3} = \frac{26.90}{0.90} = 29.90$$ $$Log \frac{Nu}{Pr.3} = 1.476$$ The Reynolds number from Equation (3) is $$Re = \frac{4afD}{12V_f} = \frac{2afD}{6V_f}$$ $$Re = \frac{(0.6430)(43.2)(0.0626)}{6(18.83\times10^{-5})}$$ $$Re = 1539$$ Log Re = $$3.187$$ The overall error in the Nusselt number from Equation (4) is $$\Delta Nu = \frac{3.413D}{A_w k_f} \left[\frac{E\Delta I}{(t_w - t_a)} + \frac{I\Delta E}{(t_w - t_a)} + \frac{EI\Delta(t_w - t_a)}{(t_w - t_a)^2} \right]$$ $\Delta I = 0.475 \text{ amps}$ $\Delta E = 0.0095 \text{ volts}$ $\Delta (t_W - t_a) = 1F$ $$\Delta_{\text{Nu}} = \frac{(3.413)(0.0626)}{(0.609)(0.01594)} \left[\frac{(1.26)(0.475)}{50} + \frac{(49.0)(0.0095)}{50}, \frac{(61.74)(1)}{2500} \right]$$ Δ Nu = 1.01 Error in Nu = 3.76% The overall error in the Reynolds number from Equation (5) is $$\triangle Re = \frac{4D}{12V_f}(a\triangle f + f\triangle a)$$ $\Delta f = 0.617 \text{ cps}$ $\Delta a = 0.001 \text{ in}$ $$\Delta \text{Re} = \frac{4(0.0626)}{(12)(18.83 \times 10^{-5})} [(0.3215)(0.617) + (43.2)(0.001)]$$ $\triangle Re = 24.4$ Error in Re = 1.59% Table 1 | | Log Re | | į | 37 | 9 | 17 | 8 | 16 | 44 | 98 | L
L | 69 | 80 | ຕຸ | 9 | 75 | 0. | 59 | 8 | 8 | 8 | 4. | 52 | 1,390 | , n | |--------------|---------------|-----|------|-------|---------|-------|---------|-------|---------|-----------------|------------|------------|----------|--------|-----------------------|-----|-------|--------|-------|-------|-------|-------|----------|----------|---------| | | Re | | | 21 | Q | | ω | 15 | 98
8 | 96 | 143 | 50 | Cu- | 144 | $\boldsymbol{\omega}$ | U) | 120 | 50 | 72 | 64 | 80 | 263 | | 79
12 | 37 | | | Log Nu 3 | | 32 | 32 | 73 | 84 | 88 | 32 | 32 | 72 | 8 | 37 | 99. | 8 | .92 | 38 | .76 | ξ, | ŗŲ. | 4. | 5, | ğ | Ö | 0.405 | 4 | | Cylinder | Nu
Pr | | Н | H | 4 | Q. | H | 4 | H | w | 4 | ฑ | ø | Ψ | 4 | 61 | ٧. | 4 | (| Ψ. | u) | .4 | 0.0 | 2,54 | • | | ameter Cyl | Qc
Watts | | 4 | 9 | 4.1 | Q | เป | ໜ້ | เป | 1.1 | 9,6 | | ω.
ω. | 9.6 | (1) | 0.2 | 1U | 3.0 | 7. | 63 | ₩. | • | | 24.44 | rU
, | | n Di | Qr
Watts | | 0.39 | 0.41 | a | 4 | w | 4 | 4 | 4 | 4 | 4 | 4 | (1) | A. | (1) | (1) | 4. | 4. | 4. | 4 | * | 4. | 1.04 | • | | 0.12 i | EI
Watts | | | o | | H | | | ·. | -4 | · | ~ | تـ | ੋ | ന | ~ | 10 | _ | ~ | ന് | ıń | ਚ | N | 25,48 | Ó | | a for | E
Volts | | 1 | 7 | 5 | ᅼ | (| 1 | 1 | 1 | ٠ | 1 | ш | ٠, | Α. | (| w | ₩, | .4 | • | • | `. | • | 2,80 | | | al Data | H
Edm
R | 3 | a | | 9 | 9.25 | | Experimental | t
w
t | | റ | റ | \circ | 101 | \circ | 0 | \circ | $^{\circ}$ | $^{\circ}$ | $^{\circ}$ | \circ | O | \cdot | U) | 66 | \sim | 101 | O, | 66 | 26 | 98 | 201 | 202 | | xbe | ተ
ል | | 68 | 69 | 70 | 70 | 67 | 89 | 69 | 68 | 69 | 73 | 73 | 73 | 74 | 73 | 73 | 73 | 73 | 75 | 75 | 77 | 78 | 73 | 73 | | 田 | تا لائ | 4 | . ^ | | _ | _ | ຸດ | ຸດ | | | . ~ | . ~ | | | | | | | | 1 - | | | | 274 | 275 | | | g 4
4 | | Ċ | 0.088 | 0.42 | 0.652 | 0.037 | 0.067 | 0.130 | 0.458 | 0.683 | 0.174 | 0.348 | 0,57.5 | 0,000 | 0,0 | 0.347 | 0.214 | 0.347 | 0.226 | 0.229 | 0.762 | 1.529 | 0.125 | 0.1880 | | | | CDS | | • • | | | 10 | | 10 | • -1 | •
• स | י
ארלי | · (| מ | • c | • • | | • • | 4 | ς, | , – | | , L | Ó | 26.5 | | | Run | | | | | | | | | | | , - | ٠, | | - | | · - | 1 | ۳.) | 1 - | ۱ ۲ | 1 (/ | 1 6 | ו ו | B-2 | Table I (Cont'd) | | og Re | • 66 | 2,029 | 60. | .16 | .25 | ,31 | .38 | .70 | .83 | .94 | .49 | .34 | .71 | • 76 | . 85 | 89 | .93 | .98 | .07 | .12 | .62 | .56 | 80 | |--------------|------------------|------|--------|----------|-----------------------|----------|---------|---------|---------|---------|------|---------|----------|---------|---------|---------|------|---------|----------|------|------|-----|-----|--| | | Re 1 | 46 | 107 | 124 | 4 | ∞ | 0 | 4, | 51 | 69 | 88 | 32 | 22 | 52 | 28 | 71 | 78 | 87 | 98 | O | 134 | 42 | 36 | 64 | | | Log Nu 3 | 44 | 0.778 | 81 | . 83 | .86 | . 89 | . 92 | 949 | .61 | .70 | .33 | ,33 | .41 | .47 | 555 | . 60 | 99. | .72 | .77 | .81 | .33 | .33 | .41 | | Cylinder | Nu. 3 | .7 | 00*9 | 4 | 0. | Ġ | ω, | 4 | ۲, | 7 | 0 | 4 | H | ਪ੍ਰ | 0 | 'n | 0 | 9. | d | 9 | υ, | ۲, | ۳, | ល | | | Qc
Watts | 6.2 | 57.02 | 1.2 | 5.6 | 0.0 | 6.4 | 1.4 | 6.6 | 0.0 | 8,3 | φ | 9.7 | 1.6 | 3,5 | 6.0 | u. | 0,8 | 9,8 | 6.6 | 9.6 | φ | φ | 9 | | Diameter | Qr
Watts | • | 1,03 | • | • | • | | • | | | * | • | • | 9 | • | • | • | • | • | • | • | | • | • | | 0.12 in | EI
Watts | 7.2 | 58,05 | 2.
G | 6.7 | 2.0 | 7.5 | 4.2 | 1.0 | 1.1 | 4.0 | 0.2 | 0.2 | 2.0 | 0.4 | 6.5 | 8 | 1,2 | 4.
E. | 7.0 | 0.0 | 0.2 | 0.2 | 9 | | for | E
Volts | 9 | 4.30 | 4, | 9 | φ | 0 | ۲, | ۲. | • | 9 | 1. | 7. | φ | 0 | ú | a | ហ | 6 | φ | O, | 7. | 7. | ω | | al Data | H
DS | • | 13,50 | 4. | 4 | Ŋ | Ŋ | ø | ó | Ė | S. | • | • | • | • | • | • | • | • | • | • | 4 | • | • | | Experimental | t
w
m
m | Q | 198 | \circ | $\boldsymbol{\omega}$ | 0 | \circ | \circ | \circ | \circ | Ç. | \circ | 0 | \circ | \circ | \circ | 0 | \circ | \circ | 66 | 0 | 0 | 100 | 0 | | трех | 4 tr | 74 | 75 | 92 | 76 | 92 | 92 | 92 | 75 | 75 | 75 | 74 | 75 | 75 | 75 | 75 | 75 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | | Ð | ‡ ₈ ™ | 1 | 273 | (| (| 1 | 1 | 1 | ~ | ~ | 1 | / | 1 | ~ | 7 | / | / | / | / | / | 1 | ~ | / | ~ | | | 2a
in | .236 | 0,5760 | • 666 | .780 | .97 | • 10 | .30 | .264 | .357 | .458 | .136 | 960. | .228 | .254 | .311 | .349 | .382 | ·436 | .540 | .610 | 118 | .10 | .181 | | | f | 9 | 25.2 | Ŋ | Ŋ | ហ | ហ្ | Ŋ. | ė | 9 | 9 | 9 | 7. | 9 | 9 | 7. | 9 | 9 | 9 | 9 | 9 | 1. | 1. | <u>-</u> | | | Run | 1 | B-4 | ı | 1 | ı | 1 | 1 | 7 | - 1 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | - 1 | 1 | ı | H | 덖 | 1 | <u>, </u> | Table I (Cont'd) | | | | E | per | Experimental Da | 1 Data | for (| J. 12 ir | Diame. | ta for 0.12 in Diameter Cylinder | nder | | | | |------|-------|----------|-----------------|-------|-----------------|-----------|--------------|----------|-------------|----------------------------------|---------|----------|---------|-----------------| | Run | f | 2a
in | [‡] لا | th Re | tw tatw-ta | I
Amps | E
s Volts | EI | Or
Watts | Qc
Watts | Nu 3 | Log Nu 3 | Re | Re Log Re | | C-14 | 40.75 | 0.2085 | 175 | 92 | 66 | 7.00 | 2.00 | 14.00 | 0.40 | 13.60 | 3,06 | 0.486 | 72 | מממ | | C-15 | 41,25 | 0.2700 | 175 | 92 | 66 | 8,00 | 2,35 | 18.80 | 0.40 | 5 4
C | . 4
 | 9190 | 2 5 | יין ר
מונט ר | | C-16 | 41.25 | 0.3050 | 176 | 92 | 100 | 8,50 | | | 0.40 | 85 | 4.64 | 0.667 | # Y C L | 1.970 | | C-17 | 4- 1 | 0.3225 | 176 | 11 | 66 | | | | 0.40 | | | 0.730 | 7 0 0 | 2,040 | | C-18 | 40.75 | 0.3400 | 1.76 | 11 | | 9,50 | 0 | 27,05 | 0.40 | 26,65 | • | 0.777 | 117 | 2,068 | | C-19 | 40.75 | 0.3950 | 176 | 92 | 100 | 10.00 | w, | 30.00 | 0.40 | 29,60 | | 0.818 | 136 | 2.134 | Table II | Marie of the state | Lug Re | • | 2.104 | • | | | • | | | • | • | • | • | • | • | - | • | - | | 2.300 | | • | • | | |--|-------------------------|-----|-------|------|--------------|-----|------|------|----------|---------|----------|------------------|-----|---------|----------|--------|------|------|---------|-------|--------|------|----------|---------| | | Re 1 | C | 727 | 252 | 156 | 167 | 192 | 108 | 200 | 233 | 275 | 322
 47 | 412 | ₽ | X
S | 113 | 138 | 178 | 199 | 212 | 222 | 148 | 266 | | a de l'estada de la company | Nu og Pr.3 | n, | 0,537 | Ň | មា | 9 | 0 | F | 8
200 | ar. | <u>ٿ</u> | <u>بي</u> ا
• | ٠, | 7. | H. | MI. | 1 28 | W) | • | ₹ 'a. | £ 201 | لييا |
• | 0.967 | | linder | Nu
Pr.3 L | 4 | 3.44 | 4 | 5 | 7 | rU. | 1,1 | œ | prof. | £- | प | S | CA | ស | N. | fi.t | 100 | ক | ci | ,
j | ~ | • | CA. | | ð | O _C
Watts | o. | 16.08 | 6.0 | 7.3 | 4.6 | 7.5 | 4.7 | | ш
ы | ۵, a | ω.
α | 8.7 | S | 5.9 | e.s | (J) | 0.8 | in
m | 53,35 | 1.8 | 2.7 | ci
ni | 3.0 | | Diameter | O _r
Watts | Ġ | 1.24 | ů | Ġ | S | ú | ú | G | Ġ | Ġ | S | Ġ | S | Ġ | d | Ġ | ø | Š | Ġ | Ġ | Ġ | G | ભ | | .25 in | EI
Watts | 7.3 | 17.32 | 7.3 | 8.6 | 0.7 | 8,8 | 6.0 | 8.3 | 4.
N | 5.5 | 5.1 | 0.0 | ы
го | 2,0 | 9.2 | 0.0 | 1.2 | 8.6 | 6.6 | 5.1 | 6.0 | ນ
ໝ | ٥.
د | | for 0 | E
Volts | 0. | 1.05 | 0 | ا | ۲. | Ġ | ω. | a | រប | 1 | 6. | 9. | 0 | 9. | ô | ø. | 9. | ω. | 9 | ۲. | ψ. | ঝ | 9, | | Data | I
Amps | 6 | 16.5 | 6. | , | α, | 9 | o. | - | 8 | 7 | 9 | 'n | - | 4. | 4 | 4, | Ŋ. | 7 | ο, | H | ю | ιĊ. | 7. | | Experimental | tw-ta | 0 | 100 | 0 | | 0 | | | | | | 0 | 0 | 0 | 0 | 0 | O | 0 | 0 | | 0 | 0 | Ó | 0 | | peri | t
n | 7 | 76 | 7 | 7 | 1 | 1 | 1 | 7 | 5 | Φ | 8 | 1 | 7 | ~ | 7 | 1 | 7 | 7 | 1 | 1 | 7 | 1 | 7 | | BX | H K | 7 | 176 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 18 | 1 | 17 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | | | 2a
in | • | 4, | .174 | .176 | .19 | .217 | .230 | .245 | .274 | .32 | .374 | .23 | .484 | .053 | .109 | .14 | .130 | .24 | .271 | .28 | .30 | u. | .378 | | | f
cps | • | 50.0 | 0 | 0 | 0 | o. | 6 | ω. | α, | φ. | φ. | ω. | ω, | 9 | o. | o, | o. | ά | • | ω. | | | 9 | | | Run | D-1 | D-2 | - 1 | ı | - 1 | ď | - 1 | 1 | ı | -1 | i | ۲ | ٦- | - 1 | ı | ţ | - 1 | 1 | E-6 | 1 | - 1 | E-9 | E-10 | Table II (Cont'd) | | | g Re | 7 | 7 | 以
N | 9 | 53 | .563 | S | | 680 | 85 | 208. | | Q. | Ġ | 9 | 0 | 1 | C1 | 4 | . 342 | M | (× | R
N | |--------------|-------------|-----------|-----|---------------|---------|------|------|------|---------|-----|------|-----|------|------|------|------|----------|----------|----------------|-----|------------|--------|----------|-------|--------| | | | Š | _ | | | | | Ø | | • | | | | | | cį | N | | | | | 61 | | | | | | | Re | ŗ | -4 | រោ | 0 | 4 | 366 | dif. | 0 | 86 | 72 | 7% | 78 | CI | ঝ | G | <u></u> | , | w | t - | 220 | CI | £ .* | N) | | | N | L09 Pr. 3 | (| ? | Ċ | H. | ó | Ö | <u></u> | Ŋ | เบ | ທຸ | ល | າບໍ | Ŷ | φ. | Q, | 0 | ທຸ | 7. | 0 | 0.980 | o | ۲. | 0 | | nder | Na
Na | Pr.3 | c c | ָ
ני | 1.6 | 2.0 | 4.2 | 0, | 3, | d | Ġ | S | 3.26 | G | .7 | 6.43 | 8.52 | 10,81 | 9 | ø, | φ. | 9,55 | 1.3 | ó | 1.8 | | er Cylinde | C | Watts | C | ,
0 | ~ | 30° | 5.4 | 6.9 | Ó | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 9.9 | 2,0 | 0.0 | 9.2 | 4.4 | 9.7 | 6.7 | 34,43 | 1.8 | 4,3 | 4.4 | | Diameter | CH. | Watts | C | V | Ġ | Ġ | 0.5 | 0.5 | 0.5 | 0.9 | 0.0 | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.0 | 1.02 | 1.0 | 1,0 | 1.0 | | 25 in | EI | Watts | Ş | ; | | 33. | 6.0 | 7.9 | 0.8 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 7.6 | 3.9 | 1.9 | 0.0 | 7, 7 | 0.6 | 7.6 | 35.45 | 2.9 | 2.0 | 5.5 | | for 0. | 凹 | ts | ľ | • | Ġ. | 7 | 6 | ü | 4. | ဆ | φ. | ø | ω. | φ, | 6, | 4 | ú | 4. | o. | ô | S | 1.39 | Ω. | 9 | 'n | | Data | | Amps | (| <i>y</i> | ٠.
ن | 9 | ò | - | 'n | ī, | Ŋ. | ស. | iU. | īŲ, | ά. | H | 4. | | 7. | 9. | 8 | 25.5 | 7 | Η. | α
• | | Experimental | t
W 1 th | Ŀ | Č | Ĉ | 201 | Ō | | | | | | | | | | | | | | | | 92 | | | | | peri | t
p | Œ | 86 | | | | | EX. | t ‡ | E. | 1 | • | ~ | 1 | N | O | O | 1 | 1 | 1 | 6 | / | 1 | 1 | ~ | ! | / | 1 | ~ | 178 | ∞ | 1 | ~ | | | 2a | in | (| \$.
00.4° | .528 | .59 | .383 | .412 | 'n | • | .287 | .22 | 21 | .222 | .368 | .43 | .581 | .88 | .34 | • | ι. | 0.6420 | • | 1.400 | 1.040 | | | Ψ. | cbs | ц | U.U | 4.7 | 3.65 | 6.75 | တ္ | 5,8 | 0. | 9.3 | 8.0 | 6°6 | 0.0 | 9.5 | 0.6 | 9.25 | 8.9 | 9.85 | 6.6 | 0.0 | 19.85 | 6 | 9.7 | o. | | | Run | | r | ⊣
! | | H | 1 | - 1 | 1 | t | - 1 | 1 | G-4 | 1 | - 1 | 1 | 1 | ı | 겉 | H | <u></u> ! | G-13 | G-14 | G-15 | G-16 | Table II (Cont'd) | | Re Log Re | 2.038
2.183
2.289
2.092 | |------------------------------------|-------------------------|--| | | Re | 109
152
194
124 | | | Nu Pr.3 Log Pr.3 | 0.674
0.671
0.813
0.803 | | זומפד | Nu
Pr.3 I | 4.72
4.69
6.50
6.35 | | Jata for 0.23 in Diameter Cylinder | Q _C
Watts | 16.89
16.88
23.20
23.18 | | ת שווופרת | O _r
Watts | 0.74
0.75
0.75 | | . 25 In | EI
Watts | 0.98 17.63
0.98 17.63
1.14 23.95
1.14 23.95 | | TOI | I E
Amps Volts | 0.98
0.98
1.14 | | Data | I
Amps | 18.0
18.0
21.0 | | Experimental | t
W
R | 92
92
93
93 | | perı | ^누 ~ | 81
84
86
86 | | Ä | [†] γ γ γ γ | 173
176
177
179 | | | 2a
in | 0.6105
0.2945
0.3845
0.7450 | | | f
cps | 10.17
29.7
29.2
10.0 | | | Run | H-1
H-2
H-3 | rable III | | | | Ä | Experiment | mental | Data | for 0. | 75 in | Diamet | er Cyli | nder | | | | |-----|----------|--------|----------|------------|--------|---------|------------|-------------|--------|---------|----------|----------|---------|--------| | Run | H (| 22 ÷ | ۵ پړ | th
M | tw-ta | H | 田 <u>-</u> | 田
日
日 | A
H | | Nu 3 | Log Nu 3 | | £ | | | 202 | | 4 | 4 | 4 | Allips | STOA | | Wates | Warts | 1 | 4 | Ke | Log Ke | | - 1 | • | 0.0 | O | 70 | 50 | o, | លំ | 2.6 | ιŪ | 0.9 | 0 | .78 | 0 | I
I | | 1 | ω. | .072 | S | 72 | 20 | ď | ກັ | 2.6 | ιŪ | 2.0 | • | .78 | Q | .31 | | 1 | 8 | .083 | O | 72 | 50 | ď | Υ. | 2.6 | เบ | 2.0 | 0 | .78 | n | .37 | | I-4 | 48.3 | 0.1011 | 123 | 73 | 20 | 22.5 | 0.56 | 12,60 | 0.54 | 12.06 | 6.03 | 0.780 | 283 | 2.452 | | ı | ç | .142 | N | 73 | 20 | ď | ıÚ | 2.6 | ហ | 2.0 | 0 | .78 | ω | .58 | | 1 | 'n | .233 | N | 74 | 20 | 'n | ហ | 3.1 | ٠. | 2,5 | 2 | .79 | Û | .76 | | ı | 9 | .289 | S | 75 | 50 | 6. | • | 6.9 | ហ | 6.3 | <u>ښ</u> | .90 | S | .85 | | 1 | 3 | .303 | O | 75 | 20 | | 9. | 8,3 | ৸ | 7.3 | φ | .94 | Ŋ | .87 | | ı | ω | .260 | N | 75 | 20 | Ŋ | 9 | 5.5 | ល | 4.9 | 4. | .87 | 4 | .81 | | 7 | 3 | .254 | N | 75 | 20 | 4. | φ. | 4.4 | ਪੰ | 8 | 9 | .83 | B | .80 | | ۲ | Ŋ. | .306 | S | 76 | 20 | œ | 1. | 9.6 | Ω. | 0.6 | 4 | .97 | 0 | .90 | | 겁 | α, | .308 | O | 78 | 20 | 9 | 7. | 0.8 | ល | 0.3 | 0.1 | 90. | iΩ | .93 | | 7 | 4. | .328 | ω | 80 | 20 | Ö | | 2.5 | 'n | 1.9 | 0.8 | .03 | ന | .92 | | 7 | 4. | .332 | ω | 81 | 20 | i. | .7 | 4.1 | ហ | 3,6 | 1.6 | .06 | (U) | .92 | | ı | • | .35 | 3 | 81 | 20 | ď | φ | 5.7 | ល | 5.2 | 4 | .09 | Q | .95 | | _ 1 | 4. | .355 | S | 82 | 50 | 9 | ά | 7.0 | ιÚ | 6.4 | 3.0 | .11 | \prec | .95 | | H. | H | .38 | S | 84 | 20 | 4. | ω. | 9.2 | ιÙ | 8.6 | 4.1 | , 14 | ω | 94 | | -1 | s. | .386 | 3 | 80 | 20 | ιΩ
• | ω. | 1.1 | Ŋ | 0.5 | 5.1 | .18 | 3 | 96. | | 7 | Ġ | .416 | 3 | 80 | 20 | ŝ | 6 | 2.7 | 'n | 2.2 | 5.0 | .20 | Q | 66. | | 7 | ۲. | .412 | 3 | 82 | 20 | | ġ | 4.7 | Ŋ | 4.2 | 6.8 | .22 | 1 | .98 | | 3 | 1. | .44 | 3 | 82 | 20 | ω. | ο. | 4.9 | ល | 5.9 | 7.7 | .248 | 05 | .02 | | 3 | 1. | .496 | 3 | 83 | 20 | o. | Q. | 8.6 | ũ | 8.0 | 8.7 | .27 | 14 | .05 | | 7 | 44.0 | Ч | 0 | 72 | 50 | α
α | 7. | 9.6 | τĴ. | 0.0 | īŲ | .98 | 0 | 06 | Table III (Cont'd) | 1 | | í | | | | | | | | | | | | | | | _ | _ | | | _ | | _ | | | |-----------|---------------------|--------|-----|----------|-------|-------|------------|------|----------|--------|----------|----------|------|------|----------|-----|------|----------|---------------|------|------|------|-----|----------|---------| | | ! | Log Re | 5 | ָ
ה | o. | 3.020 | 90. | .10 | , 12 | . 13 | .17 | . 18 | . 22 | 4 | .26 | | ال | ъ.
4. | .72 | .79 | .83 | .87 | .93 | 2.908 | . 95 | | - | | Re | • | N
N | 8 | 1047 | 15 | 27 | 32 | S
S | 4 | 53 | 63 | 78 | 87 | | I> | ₹Ţ. | CU | CV | U | u) | uı | 810 | S | | | N N | ל
ל | (| 900 | 202 | ,228 | .273 | ,326 | .371 | .398 | 438 | .476 | .501 | .525 | .539 | .82 | 82 | .82 | .82 | 88. | 96. | 9 | 50. | 1,080 | 14 | | nder | 밁 | Pr. 3 | (| n
O | 9.0 | ω | 8.7 | 7.2 | 3.5 | 5.1 | 7.4 | 9.0 | 1.7 | 3. | 4.6 | | 1 | | | • | .4 | 0. | 0 | 12.02 | ω.
Θ | | er Cyli | α | Watts | (| .33 | 2.20 | 1.22 | 3.05 | 5.09 | 5.74 | 1.18 | 5,83 | 1.16 | 5.81 | 1.47 | 3.91 | 0.0 | 8.0 | 7.9 | 2. | 1.8 | 8.7 | 4 | 7.4 | 51,36 | 8.7 | | Diamet | Ω
r | Watts | . 1 | N | ល | ល | រប | ល | ល | īΰ. | ιŲ. | ιŪ. | • | ŵ | • | Ġ | Ġ | G | S | G | C | CA. | C. | 1.29 | ci. | | 75 in | EI | tts | | ω. | 2.7 | 1.7 | 3.6 | 5.6 | 7.3 | 1.7 | 5.4 | 1.7 | 5.8 | 2.0 | 44
10 | 9. | 6. | 6.2 | ග
ග | 3.1 | 0.0 | 5.7 | 2.6 | 52.65 | 0.0 | | for 0. | 凶 | Volts | | ! | 0 | 0 | 0 | 0 | <u>ب</u> | ۳- | S | S | ຕຸ | ຕຸ | ന | ထ | φ | ω. | ထ | 9 | 0 | 0 | 7 | | CA | | Data | н | Amps | | ď | 8 | | တ် | · | <u>ო</u> | ហ | 7 | 6 | H | m | 4. | 4. | 4. | 4 | 4. | 9 | 9 | Si. | Ŋ | 45.0 | œ | | mental | tw-ta | Œ | | 50 | 20 | 50 | 50 | 49 | 49 | 20 | 50 | 50 | 51 | 52 | 52 | O | 100 | O | O | O | O | | | 102 | | | Experimen | به
ه | ርፈ | × | 75 | 80 | 81 | 82 | 82 | 84 | 85 | 85 | 87 | 88 | 88 | 89 | 73 | 74 | 75 | 75 | 77 | 78 | 80 | 81 | 77 | 79 | | 田 | ڻ ا
ھ | দ | 1 | N | B | ന | ന | ന | സ | ന | ന | ന | ന | 4 | 4 | 1 | · L- | | ~ | 1 | 1 | ထ | ~ | 179 | α | | | 2a | in | | Q | 431 | 442 | 76 | .52 | .546 | Ŋ | .614 | 64 | 969 | 7 | .774 | 0 | .067 | .134 | S | .260 | .293 | .329 | .37 | .365 | 4. | | | Ч | cbs | | ю
• | ,
 | 41.0 | n | 9 | 3.2 | 'n | 3.2 | 3 | 'n | • | ัต | C | 6 | φ | | īÚ. | 4 | • | ŋ | 42.1 | • | | | Run | | | - 1 | 2 | | $^{\circ}$ | 3 | . 2 |
က | 3 | 7) (
 |) (C | 1 | 33 | 7 (| ı | - 1 | ı | | ı | ı | ı | ر
9-7 | 3-10 | Table III (Cont'd) | | og Re | | 2.993 | 3.011 | 3.030 | |------------------------------------|--------------------------------|---|----------|----------|----------| | | Nu
Pr. ³ Re Log | | 983 | 1025 | 1072 | | | Log Nu | | 1.200 | 1,251 | 1.297 | | inder | Nu
Pr.3 Log | | 15.85 | | 19.82 | | Data for 0.75 in Diameter Cylinder | $\Omega_{\mathbf{c}}$
Watts | | 66., 55 | 75.37 | 83.63 | | Diamet | Ω_{r}
Watts | | 1.28 | 1.31 | 1.30 | | .75 in | EI
Watts | | 67.83 | 76.68 | 84.93 | | fox 0 | E
Volts | , | 1.33 | 1.42 | 1.49 | | اب | tw-ta I
F Amps | , | 100 51.0 | 100 54.0 | 100 57.0 | | Experimenta | t
g
k | | . 81 | 85 | 84 | | EX | ra € | | 181 | | 18 | | | 2a
in | | 0.4400 | 0.4610 | 0.4880 | | j | f
CDS | | 42.8 | 43.1 | 43.1 | | | Run | | J-11 | J-12 | J-13 | ## Bibliography - 1. Eckert, E. R. G., and R. M. Drake, Jr. Heat and Mass Transfer (Second Edition). New York, New York: McGraw-Hill Book Co., Inc. 1959. - 2. McAdams, W. H., <u>Heat Transmission</u> (Third Edition) New York, New York: McGraw-Hill Book Co., Inc. 1954. - Watson, W. J., Effect of Vibration on Heat Transfer from Cylinders Vibrated Sinusoidally within a Vertical Plane in Free Convection. Thesis (unpublished). Dayton, Ohio: Air Force Institute of Technology, December 1965. Personally Identifiable Information Redacted Vita Major Leon H. Chaffee was born Following his graduation in 1952 from Hobart College, Geneva, New York, he received a direct commission as a Second Lieutenant in the United States Air Force and entered electronic warfare training. Upon completion of training, he was assigned to duty with the Alaskan Air Command at Elmendorf Air Force Base, Alaska. After a two year tour of duty in Alaska, he was assigned to tours of duty with the Strategic Air Command at Plattsburgh Air Force Base, New York, and Westover Air Force Base, Massachusetts, respectively. Subsequently, he entered resident training for Aerospace Mechanical Engineering (Undergraduate and then Graduate) at Wright Patterson Air Force Base, Ohio. Permanent Address: This thesis was typed by Mrs. Betty L. Lavender. DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED